BA / BSc / BCom - Program Outcomes

On completion of undergraduate programme, the student is expected to achieve the following programme outcomes

PO1	Knowledge (Remembering)	Demonstrate basic factual and procedural knowledge in the chosen field of study. Recall and recognize key concepts, terms, and theories. Summarize and explain fundamental principles and historical developments.
PO2	Comprehension (Understanding)	Interpret and explain the significance of information and concepts. Translate complex ideas into simpler terms for understanding. Compare and contrast different theories or viewpoints within the discipline.
PO3	Application (Applying)	Apply theoretical knowledge to practical situations or real-world problems. Use appropriate methods and techniques to solve discipline-specific problems. Demonstrate the ability to implement concepts in hands-on experiences or internships.
PO4	Analysis (Analyzing):	Break down complex issues into their component parts. Identify patterns, relationships, and causes within the discipline. Evaluate the validity of arguments and evidence.
PO5	Synthesis (Creating)	Integrate knowledge from various sources to develop innovative solutions. Design and create original projects, research, or products. Generate new ideas, hypotheses, or theories within the field.
PO6	Evaluation (Evaluating)	Assess the quality and reliability of information and data. Critically evaluate the strengths and weaknesses of different approaches. Make informed judgments and recommendations based on evidence.

Under Graduate Programme Specific Outcome (PSO)

On completion of undergraduate programme, the student is expected to achieve the following programme specific outcomes:

B.Sc Zoology

PSO1	Taxonomic Proficiency (Understanding and Applying)		
PSO2	Ecological Analysis (Analyzing and Evaluating)		
PSO3	Laboratory and Field Research Skills (Creating and Analyzing)		
PSO4	Animal Physiology and Adaptation (Applying and Evaluating)		
PSO5	Ethical and Conservation Awareness (Evaluating and Ethical and Social Responsibility)		

BSc Zoology Course Outcomes (CO)

1	CC-1	Non-Chordates I:	CO1	Understanding of Invertebrate Diversity
		Protista to		
		Pseudocoelomates		
			CO2	Comparative Anatomy and Physiology
			CO3	Life Cycles and Reproduction
			CO4	Ecological Roles and Interactions
			CO5	Conservation and Biodiversity
1	CC-2	Principles of Ecology	CO1	Understanding Ecological Concepts
			CO2	Analyzing Ecosystem Structure and Function
			CO3	Population Ecology
			CO4	Community and Ecosystem Ecology
			CO5	Applied Ecology and Conservation
2	CC-3	Non-Chordates:	CO1	Understanding Invertebrate Diversity
		Coelomates		
			CO2	Comparative Anatomy and Physiology
			CO3	Life Cycles and Reproduction
			CO4	Ecological Roles and Interactions
			CO5	Conservation and Biodiversity
2	CC-4	Cell biology	CO1	Understanding Cellular Structures and Functions
			CO2	Cellular Processes and Regulation
			CO3	Cell Signaling and Communication
			CO4	Experimental Techniques and Data Analysis
			CO5	Ethical Considerations and Scientific Communication
3	CC-5	Diversity of	CO1	Understanding Chordate Diversity
		Chordates		
			CO2	Comparative Anatomy and Physiology
			CO3	Life Histories and Reproduction
			CO4	Ecological Roles and Interactions
			CO5	Conservation and Biodiversity
3	CC-6	Physiology:	CO1	Understanding Physiological Control Mechanisms
		Controlling and		
		coordinating systems		
			CO2	Homeostasis and Regulation
			CO3	Neurophysiology and Endocrinology
			CO4	Physiological Adaptations and Responses
			CO5	Clinical Applications and Ethical Considerations

3	CC-7	Fundamentals of	CO1	Understanding Biochemical Principles
		Biochemistry	CO2	Molecular Mechanisms and Reactions
			CO2 CO3	Metabolism and Energy
			CO3	Biotechnological Applications
			C04 C05	Ethical Considerations and Scientific Communication
4	CC-8	Componetive	C03	
4	CC-8	Comparative anatomy of Vertebrates		Understanding Vertebrate Diversity
		vencorates	CO2	Comparative Anatomy and Function
			CO3	Functional Morphology and Adaptations
			CO4	Evolutionary Trends and Development
			C04	Ethical Considerations and Conservation
4	CC-9	Physiology: Life	C03	Understanding Life-Sustaining Systems
4		sustaining systems		
			CO2	Integration and Homeostasis
			CO3	Transport and Exchange
			CO4	Adaptations and Responses
			CO5	Clinical Applications and Ethical Considerations
4	CC-10	Biochemistry of metabolic processes	CO1	Understanding Metabolic Pathways
			CO2	Metabolic Regulation and Control
			CO3	Bioenergetics and Energy Transfer
			CO4	Intermediary Metabolism and Integration
			CO5	Clinical Applications and Ethical Considerations
5	CC-11	Molecular Biology	CO1	Understanding Molecular Biology Fundamentals
			CO2	Molecular Techniques and Laboratory Skills
			CO3	Genome Structure and Function
			CO4	Molecular Genetics and Genetic Engineering
			CO5	Ethical Considerations and Scientific Communication
5	CC-12	Principles of Genetics	CO1	Understanding Genetic Fundamentals
			CO2	Genetic Analysis and Problem Solving
			CO3	Molecular Genetics and Genetic Technologies
			CO4	Genetics in Evolution and Biomedical Contexts
			CO5	Ethical Considerations and Scientific Communication
5	DSE-1	Animal behavior and chronobiology	CO1	Understanding Animal Behavior
			CO2	Chronobiology and Biological Rhythms
			CO3	Observation and Data Collection
	1		CO4	Adaptations and Evolution of Behavior
			CO5	Ethical Considerations and Scientific Communication
5	DSE-2	Animal Biotechnology	CO1	Understanding Biotechnological Principles
			CO2	Biotechnological Applications in Animal Breeding
	1		CO3	Genetic Modification and Transgenesis
	1		CO4	Disease Management and Biopharmaceuticals
			CO5	Ethical and Regulatory Considerations
6	CC-13	Developmental Biology	CO1	Understanding Developmental Processes

			CO2	Developmental Stages and Morphogenesis
			CO3	Genetic and Epigenetic Regulation
			CO4	Experimental Techniques and Model Organisms
			CO5	Evolutionary Developmental Biology
	CC-14	Evolution Biology	CO1	Understanding the Principles of Evolution
			CO2	Mechanisms of Evolution
			CO3	Phylogenetics and Evolutionary Trees
			CO4	Macroevolution and Adaptation
			CO5	Ethical Considerations and Contemporary Issues
6	DSE-3	Basics of	CO1	Understanding Neural Fundamentals
		Neuroscience		
			CO2	Neuronal Signaling and Communication
			CO3	Neurobiology of Behavior
			CO4	Neuroscientific Techniques and Research
			CO5	Ethical Considerations and Clinical Applications
	DSE-4	Biology of Insecta	CO1	Understanding Insect Diversity
			CO2	Insect Life Cycles and Ecology
			CO3	Behavior and Communication
			CO4	Physiology and Adaptations
			CO5	Applied Entomology and Pest Management

Practicals

Laboratory provides a wide space for students to nurture their hidden scientific potential, creative thinking and systematic analyzing skills. Through B. Sc. Zoology programme, students will realize how theory, experiment and observation are mutually correlated and help each other to expand the frontiers of knowledge of the physical universe. By conducting various experiments, students will be able to internalize a number of skills and they will be benefited in life in many ways as follows:

CONSOLIDATED STRUCTURE OF MODEL I PRACTICALS

FOR SEMESTERS I - VI

Semester	Title of the Practical	CO	COURSE OUTCOME
Sem-1	Non-Chordates I: Protista to Pseudocoelomates	CO1	Apply taxonomic keys and morphological characteristics to accurately identify and classify non-chordate organisms within the Protista to Pseudocoelomate groups. Analyze the structural and functional adaptations of these organisms that contribute to their classification.
	Principles of Ecology	CO2	Apply ecological field research techniques to collect data on biodiversity, population dynamics, or ecosystem interactions in natural or simulated environments. Analyze and interpret collected data to draw ecological conclusions and make recommendations for conservation or management.
Sem-2	Non-Chordates: Coelomates	CO1	Proficiently perform dissections of coelomate non-chordate organisms, such as arthropods or annelids, to expose and examine their internal anatomical structures. Analyze and describe the morphological adaptations and functions of various anatomical features, such as organs, appendages, and sensory structures, in coelomate organisms.
	Cell biology	CO2	Demonstrate proficiency in using light and electron microscopes to observe and analyze cellular structures and processes.

			Analyze and interpret cellular morphology, organelle distribution, and cellular activities, such as mitosis or cell division, through microscopic examination.
Sem-3	Diversity of Chordates	CO1	Apply taxonomic keys, anatomical knowledge, and other criteria to accurately identify and classify different chordate organisms. Analyze and describe the anatomical features and adaptations that define each chordate taxon, including key characteristics like notochords, dorsal nerve cords, and pharyngeal gill slits.
	Physiology: Controlling	CO2	Design and conduct experiments to investigate physiological
	and coordinating systems	02	control mechanisms, such as neural control of muscle contraction, hormonal regulation of metabolism, or autonomic control of organ functions. Analyze experimental data, including measurements of physiological variables, to draw conclusions about the control
			and coordination of specific physiological processes.
	Fundamentals of Biochemistry	CO3	Proficiently execute a range of biochemical techniques, such as protein assays, enzyme kinetics, nucleic acid purification, or chromatography. Analyze experimental data generated from biochemical
			assays, including quantification of biomolecules and interpretation of reaction kinetics.
Sem-4	Comparative anatomy of Vertebrates	CO1	Proficiently conduct dissections of representative vertebrate organisms, such as fish, amphibians, reptiles, birds, and mammals, to examine their internal and external anatomical
			features. Analyze and compare the anatomical structures and adaptations of different vertebrate taxa, identifying both commonalities and unique characteristics.
	Physiology: Life sustaining systems	CO2	Design and perform experiments related to vital physiological systems, such as the cardiovascular system, respiratory system, or renal system. Analyze experimental data, including physiological measurements and observations, to draw conclusions about the functioning and regulation of these systems.
	Biochemistry of metabolic processes	CO3	Proficiently conduct biochemical assays to measure enzymatic activities, substrate utilization, or metabolic intermediates in various metabolic pathways. Analyze experimental data, including kinetic parameters, metabolic flux, and enzyme regulation, to understand the biochemical basis of metabolic processes.
Sem-5	Molecular Biology	CO1	Proficiently perform a range of molecular biology techniques, such as DNA extraction, polymerase chain reaction (PCR), gel electrophoresis, and DNA sequencing. Analyze experimental data generated from molecular biology experiments, including DNA fragment sizes, sequence data, or gene expression profiles.
	Principles of Genetics	CO2	Proficiently conduct genetic experiments, including genetic crosses, pedigree analysis, and gene mapping, to investigate Mendelian inheritance patterns. Analyze experimental data, including Punnett squares, genetic ratios, and linkage analysis, to draw conclusions about genetic principles and inheritance.
	Animal behavior and chronobiology	CO3	Plan and execute behavioral observations and experiments to investigate animal behavior, circadian rhythms, or biological clock mechanisms. Analyze behavioral data and chronobiological measurements to identify patterns, correlations, and trends related to animal activities and biological rhythms.

	Animal Biotechnology	CO4	Proficiently perform biotechnological techniques, such as
			gene cloning, transgenesis, genetic modification, or cell
			culture, in the context of animal systems.
			Analyze experimental data and results to understand the
			impact of biotechnological interventions on animal organisms or cells.
Sem-6	Developmental Biology	CO1	Design and perform experiments related to developmental
			biology, including studies on embryonic development, organogenesis, or tissue regeneration.
			Analyze experimental data, including developmental stages,
			morphological changes, and gene expression patterns, to
			draw conclusions about the mechanisms and regulation of
			developmental processes.
	E al d'an D'alan	002	
	Evolution Biology	CO2	Design and execute experiments or investigations related to evolutionary biology, such as studies on adaptation,
			speciation, or phylogenetics.
			Analyze and interpret experimental or comparative data,
			including genetic sequences, fossil records, or ecological
			observations, to draw conclusions about evolutionary
			processes.
	Basics of Neuroscience	CO3	Design and perform experiments related to basic
			neuroscience principles, including neural signaling, sensory
			processing, or synaptic transmission.
			Analyze experimental data, including electrophysiological recordings, neuroimaging results, or behavioral observations,
			to draw conclusions about neural mechanisms and functions.
	Biology of Insecta	CO4	Proficiently design and perform experiments, observations, or
			field studies related to insect biology, behavior, ecology, or
			physiology.
			Analyze and interpret data collected from these studies to
			draw conclusions about various aspects of insect biology,
			such as life cycles, feeding behaviors, or ecological
			interactions.